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ABSTRACT in turn tries to infer the intended behavior from these. This

We contribute to the difficult problem of programming via allows a much larger group of people to “program”, as it
natural language instruction. We introduce a formal frame- does not demand specialized programming skills of the user.
work that allows for the use of program demonstrations to The shortcoming of PbD, however, is that it is often hard for
resolve several types of ambiguities and omissions that arethe system to generalize from linear examples when the in-
common in such instructions. The framework effectively tended behavior has complex structures. Furthermoregin th
combines some of the benefits of programming by demon- existing approaches it is difficult for the user to controlawh
stration and programming by natural instruction. The key is being learned or to recover from errors that were made
idea of our approach is to use non-deterministic programs during demonstration.

to compactly represent the (possibly infinite) set of candi-

date programs for given instructions, and to filter from this An alternative approach is to allow users to specify a pro-
set by means of simulating the execution of these programscedure by explicit instruction (Pbl) (e.g. [5]). A user can
following the steps of a given demonstration. Due to the provide a general description in natural language reggrdin
rigorous semantics of our framework we can prove that this particular steps of the target procedure or its high-letrats
leads to a sound algorithm for identifying the intended pro- ture. It is hence easy to express complex program structure.
gram, making assumptions only about the types of ambigu- The disadvantage with Pbl is that this type of instruction is
ities and omissions occurring in the instruction. We have prone to ambiguities and omissions.

implemented our approach and demonstrate its ability to re-

solve ambiguities and omissions by considering a list of Ideally one would want to combine PbD and Pbl, as they
classes of such issues and how our approach resolves therhiave complementary strengths. It is also desirable because
in a concrete example domain. Our empirical results show humans typically combine both methods when teaching com-
that our approach can effectively and efficiently identifgp ~ plex procedures, either demonstrating first and then descri
grams that are consistent with both the natural instruction ing the general case or describing the procedure first and

and the given demonstrations. then demonstrating it. There have been some promising ap-
proaches for making PbD systems more robust to errors and
1. INTRODUCTION allowing user edits interleaved with demonstrations (§1§,

Allowing users with no programming background to specify 4])- CHINLE [4] is a system that generates domain specific
procedures that can automate tasks is a longstanding goaPPD systems from declarative interface specifications. Via
of Al and intelligent user interfaces research. The problem @ compelling visualization of procedure hypotheses, tise sy
is challenging because the intended behaviors can be very€m allows users to discard individual steps of the leamned
complex and it can be difficult for non-programmers to de- (linear) procedure or explicitly add training examplesups

scribe the correct procedure in a natural way while having POrt of particular hypotheses. This systems however, limit
the system learn it correctly. the types of editing operations the user is allowed to perfor

and, in particular, does not allow the manual specification o

Programming by demonstration (PbD) approaches [16] al- the high-level program structure, which might be most help-
low end users to demonstrate the intended behavior to theful to the PbD part of the system. Some approaches propose

System on a number of Specific examp'eS, and the Systen']the use of situated instruction, where Pbl is gl’our'1d'ed in an
- example state [12]. Some recent work on combining PbD
We gratefully acknowledge support from the US Defense Ad- ang pp| has focused on reinforcement learning frameworks
é%néegoggsearch Projects Agency under grant number HROO11117 51 13] However, there are no general approaches for
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3) We can integrate any two program hypotheses into a sin-

instruction gle one, for example to integrate the output of a Pbl system
with the output of a PbD system that has learned from several
[ e ] demonstrations. We accomplish this by defining a mecha-

nism for Gologprogram synchronizatiothat implements a
nondeterministic
program

provably sound and complete means of compusiyigbolic
intersectionof (possibly infinite) sets of hypotheses.

An important feature of this framework is that it can accom-
[ Program Refinement J modate incremental learning over time while allowing the
learner to test its current procedure hypothesis by exaguti
oterinite it. In essence, a procedure hypothesis in our framework is
akin to aprocedure version spade that it represents many

possible hypotheses about the procedure in a very compact

manner. By virtue of basing the framework on Golog and

its semantics in the situation calculus, we get as a sidzeff

the ability to execute, i.e., try-out, program hypotheses a

iterations but for that rely on explicit indication of lootast any time, even while there still remains a lot of uncertainty

and end by the user. This exploits Golog’s integration with automated planning
and further facilitates learning from experience as well.

We approach this problem by developing a formal, compre-

hensive framework for representing, updating, and execut-We will show that our system is able to resolve the follow-

ing program hypotheses. Our goal with this framework is ing kinds of issues commonly occurring in human instruc-

to enable any learner to output its acquired knowledge in tion [8], when combined with a demonstration of the target

this form, allow for the combination of (sets of) program program in an example scenario:

hypotheses, so that different input/learning methods @n b

combined, and enable the execution of partially learned pro e mapping of objects to action arguments,

grams if necessary, hence enabling learning from expegienc

or explicit user feedback as well. Our framework is inspired

by the recent approaches for combining PbD with user edits ¢ ambiguous references like “him” or “it”,

and _integrates PbD with Pbl in a more flexible manner. The ambiguous scoping of conditionals and iterations, and
key ideas of our approach are as follows:

Figure 1. Schematic data-flow in our framework.

e Mmissing action arguments,

e unknown terms to refer to known actions or functions.

1) We can represent (infinite) sets of program hypotheses ) . ) )
usingnon-deterministic programsn particular we can rep- The next section des_crlbes our _evalyatlon domain and goals.
resent the incomplete procedures that can result from a Pbiltis followed by a review of the situation calculus and Golog
system. These are used to represent uncertainty about th&ection 4 describes how we map natural language instruc-
target program being learned. In particular, we use the logi tions into Golog programs. In Section 5 we present our ap-
cal programming languag@olog[15] which readily allows ~ Proach for refining these programs given an example demon-
us to represent and reason about such non-deterministic prostration, and our empirical evaluation. Section 6 dessribe
grams. A Golog program can be understood to represent set§ur approach for program synchronization.
of deterministic programs, namely all those that would re-
sult by resolving the non-determinism in one way or another. 2. | EARNING COMPLEX GAME PLAYING PROCEDURES
We have developed a simple, controlled grammar based in-Tg evaluate our approach’s ability to resolve types of omis-
terface that generates Golog programs from English instruc sjons and ambiguities that are common in human instruction
tions. This Pbl system uses Golog's non-deterministic pro- we consider procedures in the open-source real-time strat-
g_ramming constructs in places where instructions are am-egy game Stratagus/Wardusn this game, the goal of the
biguous or incomplete. player is to defeat all of the opponent’s agents using his own
) footmen. Footmen units can be built imrracks which in
2) We can refine these program hypotheses learned throughyrn can be built bypeasants In order to provide food for
Pbl based on an example from a PbD system. We extendnis ynits, the player also needs sufficisupplies which are
Golog’s semantics to implement the update function that re- provided byfarms Farms can, again, be built by peasants
with newly given demonstrations. This is implemented as example, we consider a family of scenarios where initially
refinementdo the program representing the version space, the player only has one peasant, and the opponent, coutrolle
resolving some of the uncertainty, i.e., making some non- py the computer, has N footmen. In order to win, the player
deterministic parts of the program deterministic. In many nhas to first use his peasant to build barracks where he then
cases, a single example can be sufficient to resolve all non-can puild footmen. In order to do so, he also needs to build
determinism, resulting in the data-flow depicted in Figure 1 farms to create the supplies for the footmen. The screen-sho

http://wargus.sourceforge.net/



build( bestPeasant, barracks) ;
waitfor( ready(bestPeasant)) ;
while noOfFootmen< noOfOppFootmen2 do
if supply< 1then
build( bestPeasant, farm) ;
waitfor( ready(bestPeasant) );
build( bestBarracks, footman );
| waitfor( ready(bestBarracks) );
while (3z) opponent(x)\ alive(x)do
set( 0, closestOpponent);
foreach a, footman(ado
| attack(a, 0)
| waitfor( dead(0));

Figure 3. Our target program.

demonstration to effectively and efficiently identify whic

of these hypotheses are consistent not only with the natural
language instructions, but also the demonstration. This wi
produce the above target procedure.

Figure 2. Screen-shot from the Stratagus/Wargus game.

While the focus of this paper is not on the interface, we study

in Figure 2 shows the situation where the player completed the naturalness of the user experience when teaching using
building barracks, farms, and four footmen (twice as many & natural, controlled grammar in a separate line of work,
as the Opponent’s) and is now ready to attack the Opponent_Where we |mplement a system for teachlng scientific work-

Outnumbering the opponent by a factor of two he is certain flows. This system, which extends the Wings Workflow Sys-
to win the game. tem [10], will make it ever easier for non-programmers to

author new workflows or modify existing ones.

As a running example in this paper, we will show how a user
can teach this general procedure to the computer by combin-;  bRELIMINARIES

ing natural instruction and a demonstration in andexamﬁle We use the situation calculus to formalize our approach. The
scenario with two opponent footmen. The procedure that g \ation calculus is a sorted logic for specifying and rea-

yvlll be taught will be applicable to any scenario where there soning about dynamical systems [20]. In the situation cal-
Is at least one peasant and any number of opponent footmenc, ;¢ " the state of the world is expressed in termsiiof
The strategy is to always build twice as many footmen be- gne fnctions and relations relativized tasuations, e.g.,
fore attacking the opponent. This procedure contains akver F(Z,s). A situation is a history of the primitive actions

loops and iterations over sets. a performed from a distinguished initial situatigfy. The

Instruct " tai It f omissioTd functiondo(a, s) maps an action and a situation into a new
nst:_uc lons 9?”615‘ y con Ialn nger‘?‘d yptehs Of o"rnls_ text situation thus inducing a tree of situations rootedin We
ambiguities simultaneously. Consider the following text, _u oviate do(an, do(an_1, .. .,do(as, do(a, )  to

which is understood by our interface. These instructions ([a1,. .. ,an], s) OF do(d@, s). We denote the set of actions

omit acktlon arguments, (Ijack stc_opes LO_r loops apd Iterations by A. In the situation calculus, all actions have deterministic
use unknown terms, and contain ambiguous references. oo cts and this is what we are assuming in this paper.

Example 1. “Build barracks using bestPeasant then wait

until bestPeasant is ready, while noOfFootmen is less than In the situation calculus, background knowledge of a domain
noOfOppFootmen times 2, if supply is less than 1 then build (e.g., Wargus) is encoded abasic action theoryD. It com-
farm, wait until bestPeasant is ready, create footman, wait prises four domain-independent foundational axioms and a
until bestBarracks is ready, while there is an opponent who set of domain-dependent axioms. Details of the form of
is alive, take the closestOpponent, forall footman attaok h  these axioms can be found in [20]. Included in the domain-
wait until he is dead” dependent axioms are the following sets:

Our system is given these utterances and a demonstration ofnitial state axiomsDg,: a set of first-order sentences rela-
the intended behavior using the Wargus interface shown intivized to situationSy, specifying what is true in the initial
Figure 2. A video of the demonstration can be found on our state, e.g.Peasantl, Sy) andPlayerld(1, Sy) = 0 state that
web site [1]. Our goal is to produce the program of Fig- in the initial situation agent number 1 is a peasant and be-
ure 3. In our empirical results of Section 5.4 we consider longs to player number 0 (us).

instructions describing this procedure with varying ameun

of omissions and ambiguities (Example 1 is one of them). Successor state axiomgrovide a parsimonious representa-
We will see that our framework allows us to (a) represent tion of frame and effect axioms under an assumption of the
trillions of program hypotheses compactly, and (b) use a completeness of the axiomatization. There is one successor



state axiom for each fluenk;, of the formF'(Z, do(a, s)) = that executing program in situations is possible and may
Or(Z,a,s), wheredp(Z, a, s) is a formula with free vari- resultin situatiors’. This is defined inductively over the pro-
ablesamong, a, s. (¥, a, s) characterizes the truth value gram structure. For instance for primitive actions:
of the fluentF'(Z) in the situatiordo(a, s) in terms of what Do(a, s, ) def Posgals], s) A s’ = do(als], s), wherea[s]

is true in situations. denotes the actiomwith all its arguments instantiated in sit-

. - . . . uation  s. For  simple  non-determinism:
Action precondition axiomsspecify the conditions under \ def , ,
which an action is possible. There is one axiom for each ac- P0(01 | 92, ,5") = Do(41, 5, ") V Do(da, 5, s'). The com-
tion a of the formPosga(%), s) = I1, (%, s) wherell, (Z, s) plete semantics can be found in [15]. In addition to the stan-
is a formula with free variables amonigys. For instance, ~ dard constructs, for the purpose of this paper we also use
Pos<Build(z, Footmar), s) = Supply(s)> 0ABarrackgz), a convenience construibreach v, o(v) dod(v), which is
states that one can build a footman usingnly if = is of an iteration over all possible bindings for variablesuch
type barracks, and there is enough supply for at least onethat(v) is true, executing program for each such bind-
more unit. ing. We call a Golog prograndeterministicif it contains

neither (61]d2) nor (wv) nor §*. While deterministic con-

Given the semantics, situations compactly desdrixgesof structs enforce the occurrence of particular actions,ethes
state-action pairs and can hence be used to represent demorfion-deterministic constructs define “open parts” thatvallo
strations of procedures. for several ways of interpretation/execution.

We have implemented a basic action theory that specifies theln the context of this paper we will interpret non-deterrsfit
available actions in the Wargus domain together with their Parts of a Golog program as uncertainty about the precise
arity, as well as basic concepts that can be useful in tegchin target procedure being learned. We will see how this uncer-
various behaviors, such as “number of footmen” (noOfFoot- tainty can be resolved via consideration of demonstrations
men), “number of opponent footmen” (noOfOppFootmen). Roughly, non-deterministic constructs can be compared to
In the basic action theory we also define the space of possi-the “union” operator and all other constructs to “join” oper
ble “values” that can be used as action arguments. Beyondators often used in version space algebra based approaches
that we could have incorporated more details about actions, (€-9-, [14]). Hence, just like version space algebras hiera
including their preconditions and effects as describe abov chically combine simpler spaces into more complex ones,
Such background knowledge can improve a systems ability We can use the inductive definition of the Golog language
to disambiguate between possible candidate programs a usel© combine several sub-programs into more complex ones.
is trying to teach. However, since this is not focus of this pa  The availability of the concept of procedures is very hdlpfu
per, we used a very simple domain encoding for Wargus, thatin this respect: it allows us to define and reuse sub-version
does not describe any action preconditions or effects.&hes SPaces and give them names.

may, however, play a role in future work, when considering

demonstrations that only describe the evolution of theestat 4. MAPPING INSTRUCTIONS INTO GOLOG PROGRAMS

of the world, without explicit mentioning of action occur- \We have created a simple, controlled-grammar based input
rences. In those cases we would need to be able to conjecinterface for users to write English instructions, desogta

ture action sequences that would explain “what happened”, program they would like the system to learn. These instruc-

as it has been described in the literature (e.g., [18]). tions are then translated into a Golog program, using non-
determinism in places where details were omitted or things
3.1 Golog were ambiguous. The grammar and translation driving this

Golog [15] is a programming language defined in the situa- interface is domain independent and only takes a basic ac-
tion calculus. It allows a user to specify programs whose set tion theory, i.e., a domain description, as input in order to

of legal executions defines a sub-tree of the tree of sitngtio '€cognize and conjecture action names and functions, flu-
of a basic action theory. Golog has an Algol-inspired syntax €nts, and constants. The interface, deployed via a web-appli

extended with flexiblenon-deterministic constructsGolog ~ cation, give feedback to the user in terms of which parts of
programs are created using the following constructs: the typed-in instructions are being understood and how they
_ are interpreted. Nevertheless, the degree to which the lan-
nil empty program guage supported by our grammar and the use of this interface
acA primitive action seems natural to the user is not focus of this paper. Instead,
@7 test conditiony we evaluate our work with respect to the types of omissions
[615 6] sequence and ambiguities our framework can resolve by means of con-
if ¢ then 4, elsed, conditional sidering one or more example demonstrations.
while ¢ do ¢’ loop
(61 | d2) non-deterministic choice Inthe remainder of this section we will discuss the omission
(mv)d(v) non-deterministic choice of argument and ambiguities our framework can handle, some of which
0" non-deterministic iteration are contained in above instructions, and will describe how

In addition, Golog enables the definition of procedures. The they can be represented in Golog. In the next section, we
semantics of a Golog progradris defined in terms of macro  will then describe how our approach can take such a Golog
expansion into formulae of the situation calculus. program as input and then “refine” it by incorporating the

Do(4,s,s’) is understood to denote a formula expressing information contained in the given example demonstration.



This will produce the above target program.

Ambiguous mapping of action arguments:

When a user say$attack the closestOpponent with best-
Footman”, it is not clear which of these arguments shall
be first and which second. To accommodate for this ambi-
guity, we use non-deterministic choice to model all possi-
ble orderings of the stated arguments. We hence represent
this sentence as:

(attack(closestOpponent, bestFootman) |
attack(best Footman, closestOpponent))

Upon consideration of an example demonstration, as de-
scribed in the next section, our refinement algorithm will
discover which of the two possibilities actually explains
the demonstration (is consistent with it) and will hence
only include that possibility in the refined program. This
will always be possible as long as the two arguments do
not have the same value in the given demonstration. Note,
however, that the demonstration does not mention func-
tions or fluents, but only concrete values. Hence, instead
of attack(best Footman, closestOpponent) the demon-
stration will state, e.g.qttack(1,5), if agent number 1

is currently thebest Footman and agent number 5 is the
closestOpponent.

Missing action arguments:

Human teachers often omit action arguments when they
seem obvious from the context or by common sense. Since
we assume that the domain definition contains an exhaus-
tive list of all possible actions in the domain of interest
together with their respective arity, it is easy to detect
whether an argument is missing. But the system still needs
to figure out what value (function, fluent, or constant) to
use for the missing argument. For instance, in Wargus it
seems natural to sdbuild barracks”, whereby one omits

the first required argument of the “build” action, which
specifies the peasant that shall be used to build the bar-
racks. However, if, e.g., there is only one peasant, it is
really obvious to a human what that argument should be.

Omissions of this kind are represented in our framework
using Golog'st construct. This introduces a new, exis-

tentially quantified program variable, representing the un

known value, e.g.:

(mv)[value(v)?; build(v, barracks)].

The test,value(v), restricts the variable to be of type
“value”. During refinement, our algorithm considers all
possible such bindings that evaluate to the same concret
value as the one appearing in the demonstration in the re-
spective current state of the demonstration.

Ambiguous references:

Itis common for a human to refer to previously introduced
terms using pronouns (“he”, “it”, “him”, etc.) where again,
to a human it is often clear from the context or common
sense which object is referred to. In our interface, we al-
low for the explicit introduction of reference objects in

the context of quantification. For instance, when the user

says‘take the closestOpponent, all footmen, attack him” 5.

he both omits the subject of the attack and uses the am-
biguous reference “him”. To a human, who knows that
footmen attack, it might be clear that in each case of the
implicit iteration, the considered footman shall be used as
the subject of the attack and the closestOpponent as the
object. The demonstration for such a statement would in-
volve multiple instances of the attack action, all of which
share the same object but have different subjects. As we
will see, this is exploited by our refinement algorithm to
disambiguate the instruction.

Ambiguous scoping:

Specifying the scope of an if-then condition, a while-loop,
or an iteration over a set is something humans rarely re-
member to do when explaining a program, and in fact
generally does not confuse human students all that much
as humans are good at figuring out from context or com-
mon sense where the respective instruction block logically
ends. Our interface does not require the user to specify
the scope of such blocks either, but as a result, there are
often numerous combinations of possible scopes. Con-
sider, e.g., the instruction{Take the closestOpponent,
forall footman, attack him with the footman, wait until he
is dead. ” The iteration in this sentence does not have
an explicit scope. It is hence not clear whether or not the
waiting action is part of the body of the iteration or not.
This can be represented in Golog as:

[set(o, closestOpponeit
([foreach{a, Footmar{a), attacka, 0));
waitfor(deado))] |
foreach(a, Footmar{a),
[attack a, 0); waitfor(dead0))]) )|

Using unknown terms: In the Wargus domain, there is an

action called “build” that can be used to build new units
(e.g., footmen). When a user is unfamiliar with the correct
action names, he may however ségreate a footman at

the barracks” He may even at the same time omit an ar-
gument: “create a footman” To represent this sentence
in Golog and make these ambiguities explicit, we create
a non-deterministic choice between all possible actions in
the domain that have the right number of arguments or
more. For actions that have more arguments, we insert
existentially quantified variables, as described above. Un
known terms appearing in the place of values are handled
analogously.

gutting it all together: The instructions of Example 1 con-

tain all of these types of omissions and ambiguities. The
Golog program representing these instructions is too large
to show in this paper but can be found on our web site:
[1]. While large, the program is still rather compact com-
pared to the set of 486400 candidate programs, which it
describes. This program can be used as input to the pro-
gram refinement approach we describe in the next section,
to produce the sought target procedure, when given the ex-
ample demonstration.

REFINING GOLOG PROGRAMS



In this section we describe how the existing Golog semantics actions inS’ guides the interpretation of the program, hence
can be extended to refine a program given an example. Thisoften limiting the amount of search necessary to one-step
will allow us to take the Golog program representing the look-ahead. However, the program can actually alseebe
user instruction and refine it using any provided demonstra- finedduring this process such that all choices regarding non-
tions. We begin by defining the problem of programming by determinism in the program that were necessary in order to
demonstration and what counts as a solution in our setting.explain the given demonstration are recorded. The refined
We assume the target program to be deterministic. How- program represents the version space updated with the con-
ever, in the absence of sufficient training data, we may not sidered example.
be able to specify all the details of this program and hence
still end up with a non-deterministic program after conside  We accomplish this by extending the original Golog seman-
ing a number of examples. This is reflected in the definition. tics as shown in Figure 4, where we use an additional forth
argument that “returns” the refined program. Intuitivehe t
Definition 1 (PbD Problem) A PbD problemis a tuple reflned'p_rogram is the same as the orlgmal_ program for all
<57 {(S1,80),.... (S, 5&)}% whered is a Golog program deterministic constructs, and for non-deterministic d:mﬂs“
and each(s;, S!) is a tuple of situation terms such thft= it contains the specific choice that was made in order to “ex-

do(@, S;) for some sequence of actiodsA solutionto this ~ SCUte” the program. The latter, however, is only the case for
o i . those non-deterministic choices that are actually visikexnt
problem is any prograny such that: . X o ; X , ;
instance, choices occurring in the 'then’ or the ’else’ latan

1. for any pair of situations, S, if D = Do(&, S, S'), then of an if-then-else, are only resolved if that branch applied

alsoD E Do(3, S, $'); and to the considered example. Choices not visited during pro-
gram execution are left as is. In the next section we will see
2. for (S;,5)) € {(51,51),...,(Sn, Sh)}: that this refinement can be used to identify those specializa

tions of the original program that are consistent with agive
program demonstration. This is accomplished by fixing the
second situation ternms{), which forces the program to ex-
ecute in compliance with the actions in that situation term.
OJ[-|ence, by keeping track of the choices made during execu-

ion, we obtain a program that could be used to reproduce the
demonstration described by the giv€nFurther, since only
those choices are made that are actually required to execute
the program, no candidate programs are ruled out.

D & Do(d8',S;,S!) A (Vs).Do(d,Si,5) Ds =S,

That is, a solution to a PbD problem is a program that does
not admit any executions not admitted by the original pro-
gram, but does (at least) admit the given set of demonstrate
executions. Intuitivelyp is a non-deterministic Golog pro-
gram describing a space of possible programs, #&nid a
specialization of this program that enforces behavior atco
ing to the given examples. We show how such a solution can
be obtained via simulation of the given program over the _ _
demonstrations while keeping track of the non-determimist -2 Computing Program Refinement

choices being made during this simulation. Note that even Intuitively, the new, forth argument io’ “returns” the re-
though we assume the target program to be deterministic, afined program that results from making the necessary choices
solution to a PbD problem is not necessarily deterministic. during execution of the program in order to reactfrom

This is in particular the case when not enough demonstra-$- Hence, we can achieve our goal of refining a Golog pro-

tions were given to rule out any remaining uncertainty. gramg Utsrin% agiven demonstratigsy, ) by constructively
proving that:

5.1 Defining Program Refinement D (35).Dd'(6,8,5,6")

Given a starting situatiols and a prograna, the originally , . . . .
intended use of Golog was to create a constructive proof thatWhereD is the basic action theory describing the domain.
D |= 35'.Do(3, S, s'), hence obtaining as a side-effect a sit- T_hls W|Il_prOV|de us with one out of pote_nt!ally several pos-
uation terms’ that is a sequentiailan for how the program  SiPle refined programs’. As with the original Golog, the
can be executed successfully. We, however, will use the se-provided definition ofDo’ lends itself to a rather straight-

mantics in a different way: givetwo situation termss, S’ forward Prolog implementation, casting the problem of con-
and a progran with non-determinism, verify that executing ~ Structing this proof into a search problem. This implementa
§ starting inS is possible and can result &. In doing so tion is available on our web site. It can be used to obtain all

we heavily exploit the logical underpinnings of the present ~ Possible refined progrands.

framework, in order to actively exploit the content $f to

infer how decisions need to be made, rather than following a An Extended Example

trial-and-error approach. Let us consider an example from the Wargus domain. In
Wargus we repeatedly receive descriptions of the curratd st

Recall that situations are sequences of actions and alem gi  of the world from the game engine, which we can model as

a basic action theorp, completely describe the state of special actions in the situation calculus, whose effecbis t

the world. ThereforeS and S’ can be used to represent set all fluents according to the information retrieved from

a demonstration. Hence, without any modification neces- the game engine. Hence, demonstrations are sequences of

sary, the existing Golog semantics can be usacktdy that regular actions executed by the user and world-state gescri

a given program is consistent with a given demonstration. tions that indicate state updates and happen while thesiser i

This verification can be done efficiently, as the sequence of waiting for orders to be completed. For instance, the action



Do (nil,s,s',8") =s" =sA§ = nil
Do'(a,s,s’,8') = Posgal[s],s) A s’ = do(a[s],s) A& =a
Do’ (p?,5,8",8") = ¢[s]? As =5 N = p?
Do’ ([61562],8,8,8") = (Fs*, 87, 85).Do’ (61, s, 8™, 1A
Do’ (62,5%,8",05) N = [87; 5]
Do (if p then 61 elseds, s, s",8") = (35").
(p[s] A DO’ (61,s,5",8") A& =if pthend” elseds) Vv
(—[s] A Do’ (62,8, ,8") A& =if pthend; elses”)
Do’ (while ¢ do d, s, 5", ") = —[s'|A
(VP).{(VSL $9,83,01,02, 53) [(,0[81] A\ DO/((Sl7 81,82, 52) A\
P(while ¢ do d2, s2, s3, while p do d3) D
P(while ¢ do 41, s1, s3, while ¢ do 53)] A

(Vs1,61)—¢[s1] D P(while ¢ do 61, s1,s1,while ¢ doé1)}
D P(s,s,5,d")
Do’ ((61]82),5,5",6") =
Do'(61,s,8",8") VvV Do (82,s,5",8")
Do ((mv)3(v), 5,8",8") = (3z) Do’ (§(x),s,”, )
Do’ (6%,s,5',8') = (VP).{(Vs1)P(s1, 51, nil)A
(VSL s2, 83,01, 52)[DOI(5, S1, 82, 51) A 1:'(527 s3, 62)
D P(s1,s3,61502)]} D P(s,s',8)
Do’ (P(%),s,s",6") = Proc(P(£),8) A Do (8,s,s",8")
Do’ (waitfor ¢, s,s",6") =
(pls] A 8" = s A = waitfor ) v
(—¢[s] A (3z). Do’ (waitfor ¢, do(state(x), s),s’, ")

Figure 4. Axioms for refining programs.

sequence attack(l, 5), state(...), ..., state(...), attack(d,

est right now, and that there is a designated “bestFootman”
which in S is agent number 1. Then, upon trying to prove

D |= (36').D0 (Py, Sy, do(A4, Sp), 0')

the algorithm will discover that both branches of the non-
deterministic choice irP; explain the first action of the se-
quence &ttack 1, 5)) when usingy = bestFootmarand us-

ing the argument orderin@, o) rather than(o, v). This is
because the condition of the while loop evaluates to true
in S ando is set to5. There may be functions, fluents, or
constants other than “bestFootman” evaluating to .3 and
each of them will be considered as a possibility as well. Be-
yond this first step though, only the first program branch ex-
plains the next action in the sequens®tg. . . ), which is a
state update and which can only occurring while the player
is waiting. The second branch of the prograiis thereby
ruled out, as it demands the execution of another attack ac-
tion, which is inconsistent with the demonstration. The def
inition of Do’ for primitive actions requires the next action
in the demonstration to match the action being executed. If

also the remainder of the sequen&gcan be explained us-
ing the first branch of?; with the values described above,
the refinement will succeed witf =

while (3x) opponent(x)\ alive(x)do

L set( o, closestOpponent);

attack(bestFootman, 0);
waitfor( dead(0))
5.3 Formal Properties of Program Refinement

6), state(...), ..] represents a demonstration where the user From a formal point of view, there are a few things to note
first ordered agent number 1 to attack agent number 5, thenabout our definition and computation of refinement: First of
waited for a while as the orders were carried out and the all, the cases for if-then-else and while-loops are stithda
world kept changing. The user then ordered the agent to at-cordance with the original Golog semantics. We here have
tack agent number 6, followed by more state updates. Wemerely unwound the macro-definition (in terms (@f |d2)
here, and elsewhere in this paper, omit the contents of theandd*). The reason for this is that we want to keep the if-
lengthy state updates. In addition to this demonstratiom, t  then-else/while-loop in the refined program, rather than re
user utters the following instructions: placing them with the specific sequence of actions resulting
from resolving the non-deterministic choices for the sfieci
“While there is an opponent who is alive, take the closest- case considered.
Opponent, attack him, wait until he is dead”
Second, since we want to explicitly refer to programs as ob-
These instructions can be translated into the followingp@ol  jects, in order to produce the refined program, we require
program, which accounts for the ambiguous scope of the the reification of programs as objects in the language. This
while-loop, and the missing argument for the attack action: property is shared with the so called transition semantics f
Golog, as described by [6], and we assume programs are rei-
fied analogously. This also allows us to define the semantics

(while (3z) opponent(x\ alive(x)do ! _ .
in terms of a predicate rather than macro-expansion.

set( o, closestOpponent);
(mv) [value(v)? ; (attack(v, o) attack(o, v))];
waitfor( dead(0)) |
[while (3z) opponent(x)\ alive(x)do
set( o, closestOpponent);
L (mv) [value(v)? ; (attack(v, o) attack(o, v))]
waitfor( dead(o)) )

Finally, by analogy to the original semantics we have that:
Proposition 1. For any two situationsS, S’ and a Golog
programé without procedures:

D = Do(s,8,8') iff D (38).Dd(5,8S,5',5)

Soundness of Program Refinement
The following theorem states that program refinement leads
to provably correct solutions of PbD problems:

Theorem 1. Let M = (6,{(S1,57),...,(Sn,S},)}) be a

Let us call this progranm; and the above action sequence

A}. Let us further assume that there is a situaian which
there are two opponents left alive, 5 and 6 with 5 being clos-



PbD problem. Any progran¥ such that: 100000 . T T

D ': (E' 51, N ,5n_1).DOI(5, 517 Si, 61) A
DO/((Sl, SQ, 85,52) VARERWAN DO’((Sn_l, Sn, Sl 5/)

n’

10000

is a solution toM/. — Proof: See our technical report [7].

The theorem gives rise to a host of possible algorithms for
finding solutions. This includes the common filtering algo-
rithm for updating version spaces: Given the first demon-
stration, generate the entire set of consistent versiocespa
(i.e., refined programé,;). Then, given subsequent exam-
ples, remove from this set all those spaces (programs) that 100 - - .
are inconsistent with any of the examples. Note that our use toowo 10300 1”02.2“08 tevl0 levlz levld
of logic readily realizes the “lazy evaluation” approachtth umber of candidate programs

is pODU!ar in many version space alg_ebra based approachesgigyre 5. Number of search nodes expanded in program refinenmé vs.
to PbD in order to handle infinite version spaces. number of candidate programs described by instruction (loglog scale).

1000 [

expanded search nodes

with scopes ——
Iw/o scopes -I-)(--

Other possible algorithms could follow a depth-first or abes

first search approach. The latter could, for instance, be re-
alized by devising an evaluation function that ranks refined
programs by some understanding of likelihood. For exam-
ple, shorter and/or simpler programs could be explored be-
fore more complicated ones are considered. There is a hoshesults

of related research on situation calculus and Golog from Figure 5 shows the results. Each point in the plot corre-

which such specifications and search strategies could besponds to one example instruction. The x-axis denotes the
drawn (e.g., [3, 11]).

number of programs that are consistent with the instruction
. These are the candidate programs, each of which might be
5.4 Empirical Results _ _ the program that was intended by the user. This set of can-
interface for users, we do not evaluate the naturalnessrof ou \ye generate from the human instruction, as described in Sec-
current interface, since this is not germane to the contribu tion 4. On the y-axis we show the number of search nodes
tions of this paper. Instead, in order to evaluate the yiiift  expanded during refinement of the Golog program, guided
our approach for the goal of effectively combining program- py the example demonstration. To improve readability, we
ming by natural instruction with programming by demon- paye split the test cases (input sentences) into two classes
stration, we consider a number of example instructions con- shown in the figure using two different lines. In the first elas
taining common issues arising in natural instruction. We )| sentences use explicit scoping of instruction blockshs
evaluate how well our system can handle these issues, giverys |gops, while the second class contains the same sentences

representation and the refined program produced by our al-
gorithm can be found on our web site [1]. In all cases, the
refined program was deterministic and equal or equivalent to
the intended target program.

a single demonstrations of the target program. but with all scoping information removed. All experiments
were run on an Intel Xeon CPU, at 2.66GHz. Memory con-
Setup sumption was negligible due to the use of a depth-first based

Intuitively, the more omissions and ambiguities instroics search approach.
contain, the harder it is to refine them using an example
demonstration, because there are more possible ways of “ex+rom the figure, we can conclude that the amount of omis-
plaining” prefixes of the demonstration. While our existing sions and ambiguities in terms of action names, action argu-
implementation of the refinement algorithm based on the ax- ments, and their ordering, increases the amount of search re
ioms of Section 5.1 has not been optimized, we neverthe- quired, as one would expect. In addition, we can observe that
less wanted to use it to gauge the empirical performance of missing scoping information over-proportionally incregas
our algorithm. To that end, we created a set of 18 exam- the amount of required search in order to refine the non-
ple instructions, all describing the program from Section 2 deterministic program representing the natural instoncti
with varying amounts of omissions and ambiguities of all the While removing scoping naturally increases the number of
types described. These instructions were created by manu-jpossible target programs, it seems that its absence from the
ally removing more and more detail from a perfect descrip- instructions is particularly difficult to compensate foings
tion of the target program. Example 1 shows one of the 18 a demonstration. In other words, demonstrations seem very
instructions we used. effective in disambiguating between possible actionspact
arguments, ambiguous references and the like, but do not
We then translated these instructions into Golog programs provide much guidance in terms of program structure. This
which we then refined using the previously described demon-is consistent with the general insight that demonstratasas
stration of the target program (cf. Figure 1). The demon- poorly suited for describing complex program structure.
stration and the complete set of instructions used in the ex-
periments together with their automatically generatecb@ol  Overall, however, we can observe that our approach is able



to effectively and efficiently exploit the information con- the existence of an intersection for general Golog programs
tained in an example demonstration to identify a consistent is undecidablé. Therefore, we only consider a restricted
candidate program. In some cases, our approach only hadorm of Golog programs without while—loops and recursive
to expand 7593 search nodes to identify a program that isprocedures, and where (bounded) non-deterministic iberat
consistent with both the human instruction and the demon- is only allowed over primitive actions and expressions of
stration, out of 6.554 trillion candidate program that wbul the form (7v)a(v) or (7wv)v, i.e., non-deterministic choice
be consistent with the human instructions alone. of action arguments or actions themselves. For clarity, we
refer to this language as Golog For this class of pro-
So far our algorithm only uses naive depth-first search. Its grams we define the set of axioms shown in Figure 6, de-
performance in terms of considered nodes could hence stillnotedYsy,, regarding a new predicasyncthat can be used
be improved by drawing on the insights from the planning to constructively prove the existence of an intersection of
and search literature. In particular heuristic search two programs, i.e., generate a program that represents-the i
approaches might improve performance by guiding the tersection of the version spaces. The resulting repreti@mta
search to explore most likely candidate programs first. is very compact, as it uses the non-deterministic construct
of Golog to represent the space of programs still considered
6. INTERSECTING VERSION SPACES to be a candidate for the target program. For ease of pre-

Thus far we have made the assumption that demonstrationS€ntation we assume—wnhogt I_?S.S (if géan(fefrlallt/)\//—that all
are given directly to our framework, and that only within Programs are sequences (elg;nil] instead of4). We use

our framework the learning from examples takes place. In € notatiomonde{Z), whereZ is a set, to denote the non-
practice, it would, however, be extremely valuable if we deterministic choice betweend'gfle elements of the setfare.,
could combine our framework with existing algorithms for Z = {21,...,2,}, nondetZ) = (2 | --- | 2,). Our re-
learning from examples as well. To this end, in this sec- strictions on non-deterministic iteration ensure thas et

tion we consider the problem aftersectingversion spaces  always turns out to be finite

symbolically. The problem can be stated as follows: Given ]

two version spaces for the same target program, determine al he axioms lead to a sound and complete means for com-
new version space that contains all and only those programputing program intersections, as stated by the followirgg th
executions that were contained by each of the two given orem. We have implemented but not yet evaluated this.
spaces. In terms of our program based representation of verTheorem 2. Let §;, §, be two Golog programs over some

sion spaces, we can define the problem more precisely: action theory. If there exists a Gologorogramé’ such that
Definition 2 (Program Intersection)_etd;, d2 be two Golog Ysync = SYNQd1, 02, 0"), then it is an intersection afy, 5.
programs over action theor®. The Golog progrand’ is Further, if there exists an intersection®f o2, then there is
called anintersection ofy, d, if for any two situationsS, S’ ad’ s.t. Xsync = SYNddy, 42, 6"). — Proof: See [7].

such thatS’ = do(d, S) for some sequence of actioas o

D E Do(d.8.8) iff D & Do(é,S,S") and Note that the theorem does not state that all possible inter-

D E Do(6s, S, 5), and there is at least one such pgis’ sections can be identified usisgnc This is because there

such thatD |= Do(4;, S, S') andD = Do(3s, S, S"). may be infinitely many possible intersections, all of which
characterizing the same sub-set of the version spaceathste

As an example, consider a situation where the user is teach-2nly one such representation is found. This, however, does

ing how to behave when a single footman, denoted “F”, en- Not cause practical limitations.

counters a single opponent footman, “O”. The user utters:

“if strength of f is greater than strength of o, attack, else 7. DISCUSSION

retreat” and also demonstrates a few examples, where heWe have presented a framework for integrating program-

always either attacked, or moved away from the opponent. ming by natural language instruction and programming by

The instruction omit the “attack” arguments, and use the demonstration. The key idea was to represent ambiguous

unknown term “retreat”. This is captured by the program: human instruction as non-deterministic programs, and then

if strengt{F’) > strengt{O) then (7x, y)attackz, y) else refine these programs via simulation of demonstrations. We

((rx,y)movézx, y)|(mx, y)build(z, y)|(rz, y)attack z, v)). have evaluated our framework in the Wargus domain, illus-
Assume that some PbD algorithm was able to generalizetrating the types of omissions and ambiguities commonly
the demonstrations to the prograrfattack £, O)|moveF, occurring in human instructions that our framework can re-

pogF') — (pogO) — pogF')))), wherepogz) denotes the  solve when provided with an example. Our empirical results
X-y-position of agent:. That is, the learner learned the con- show that the framework is practically effective and effitie
cept of “away from the opponent”, but was not able to learn We further presented an approach for combining the sym-
under which circumstances to do the one vs. the other. Whenbolic outputs of different learners via program intersati
taken together, one can of course find that that the correct

program isif strengti{F’) > strengti{O) then attack F, O) Our ultimate goal is to facilitate programming by end-users
elsemové F, pog F') — (pogO) — pog F))). This is what is Therefore we plan to do user studies to evaluate the nat-

achieved by the approach we define in this sectiorsjor 2Qur intuition stems from the problem’s similarity to the difficult

chronizingtwo Golog programs. problem of determining program equivalence.

) ) ) ®Intuitively this is becaus@*’s—which are the only source of
We conjecture that the problem of (constructively) proving infinity—are unified when they “meet” inync




syndd, d2,68") = sync(81,d2,6") V syné(dz, 61,6")
syné(nil, nil, y) = y = nil
sync([a; b1], [a; b2], y) = (32).syndby, b2, 2) Ay = [a; 2]
syné([p?; ], d2,y) = (F2).syndz, 52, 2) Ay = [p?; 2]
syné([if ¢ then &, elsedy; z], 62,v) =
((Elza)Sync([‘sa? x], 02, za) A
((3zp).synd[dp; z], 82, zp) Ay = if pthen z, elsez,) vV
((Bzp).synq[0y; 2], 62, 25) Ay = [07; za])) V
(( Bza).syn€[a; x|, 62, 2a) A
(32p)-synd([6p; 2], 62, 2) Ay = [97; 2] )
syn¢([(dal 0p); 2], 62, 9) =
((3za).synd[6a; ], 82, Za) A
((3zp).sync[dp; ], 92, 25) Ay = (2a| 2p)) V
(( Bzp)-synq[0y; x], 02, 25) Ay = 2a)) V
((Aza)-synd[da; z], 82, za) A (321).SyNC[8p; 2], 82, 2) Ay = )
syné([(mv)d(v); z], 92, y) = ((Fv',2").02 = [(mv")s(v); 2']A
(30').5ynde, o/, 8') Ay = [(70)5(0); 8]) v
((BV,a").62 = [(mv)6(v");2"] A (3Z).y = nondetZ) A
Z # 0N (Vz).z € Z = (3q).syn€[6(q); z], 52, 2))
sync([a(v)*; @], 62, y) = ((32’).62 = [a(v)*;2]A
(38").syng[a(v)"; 2], 2", 8") Ay = [a(v)*;6']) v
(32").62 = [((mv)a(v") ;2] A
(36").synqa(v)"; z],2",8") Ay = [a(v)";8]) v
((Az")82 = la(v)™;2'] A (Az")d2 = [(mv)a(v)*;2'] A
(3Z2).y =nondetZ) A Z £ 0O A
(V2).z € Z = (synd[a(v); a(v)*; 2], 62, 2) V syndw, 62, 2)))
SynE([((xo)a(w'))*s 21, 62,9) = ((Be).62 = [a(0)"; 2']A
(36").synqa(v)"; z],2",6") Ay = [a(v)";8]) v
(32").82 = [((mv)a(v)) ;2] Ay = [((7v")a(v")*; 6T A
(38").syng[((mv")a(v"))*; 2], 2", 8")) v
((B2")62 = [a(v)*;2'] A (B2")b2 = [(v)a(v)*;2'] A
(3Z).y =nondetZ) A Z # O A
(Vz).2 € Z = (synq[((mv")a(v")); ((mv")a(v"))*; ], 82, 2) V
syndz, 62, 2)))

Figure 6. The set of axiomSgnc.
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