
A Formal Framework for Combining Natural Instruction
and Demonstration for End-User Programming ∗

Christian Fritz †

Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, CA 94304 USA
cfritz@parc.com

Yolanda Gil
Information Sciences Institute

University of Southern California
Marina del Rey, California. USA

gil@isi.edu

ABSTRACT
We contribute to the difficult problem of programming via
natural language instruction. We introduce a formal frame-
work that allows for the use of program demonstrations to
resolve several types of ambiguities and omissions that are
common in such instructions. The framework effectively
combines some of the benefits of programming by demon-
stration and programming by natural instruction. The key
idea of our approach is to use non-deterministic programs
to compactly represent the (possibly infinite) set of candi-
date programs for given instructions, and to filter from this
set by means of simulating the execution of these programs
following the steps of a given demonstration. Due to the
rigorous semantics of our framework we can prove that this
leads to a sound algorithm for identifying the intended pro-
gram, making assumptions only about the types of ambigu-
ities and omissions occurring in the instruction. We have
implemented our approach and demonstrate its ability to re-
solve ambiguities and omissions by considering a list of
classes of such issues and how our approach resolves them
in a concrete example domain. Our empirical results show
that our approach can effectively and efficiently identify pro-
grams that are consistent with both the natural instruction
and the given demonstrations.

1. INTRODUCTION
Allowing users with no programming background to specify
procedures that can automate tasks is a longstanding goal
of AI and intelligent user interfaces research. The problem
is challenging because the intended behaviors can be very
complex and it can be difficult for non-programmers to de-
scribe the correct procedure in a natural way while having
the system learn it correctly.

Programming by demonstration (PbD) approaches [16] al-
low end users to demonstrate the intended behavior to the
system on a number of specific examples, and the system
∗We gratefully acknowledge support from the US Defense Ad-
vanced Research Projects Agency under grant number HR0011-
07-C-0060.
†Work done during post-doc at USC/ISI.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’11 , February 13–16, 2011, Palo Alto, California, USA.
Copyright 2011 ACM 978-1-4503-0419-1/11/02...$10.00.

in turn tries to infer the intended behavior from these. This
allows a much larger group of people to “program”, as it
does not demand specialized programming skills of the user.
The shortcoming of PbD, however, is that it is often hard for
the system to generalize from linear examples when the in-
tended behavior has complex structures. Furthermore, in the
existing approaches it is difficult for the user to control what
is being learned or to recover from errors that were made
during demonstration.

An alternative approach is to allow users to specify a pro-
cedure by explicit instruction (PbI) (e.g. [5]). A user can
provide a general description in natural language regarding
particular steps of the target procedure or its high-level struc-
ture. It is hence easy to express complex program structure.
The disadvantage with PbI is that this type of instruction is
prone to ambiguities and omissions.

Ideally one would want to combine PbD and PbI, as they
have complementary strengths. It is also desirable because
humans typically combine both methods when teaching com-
plex procedures, either demonstrating first and then describ-
ing the general case or describing the procedure first and
then demonstrating it. There have been some promising ap-
proaches for making PbD systems more robust to errors and
allowing user edits interleaved with demonstrations (e.g., [19,
4]). CHINLE [4] is a system that generates domain specific
PbD systems from declarative interface specifications. Via
a compelling visualization of procedure hypotheses, the sys-
tem allows users to discard individual steps of the learned
(linear) procedure or explicitly add training examples in sup-
port of particular hypotheses. This systems however, limit
the types of editing operations the user is allowed to perform
and, in particular, does not allow the manual specification of
the high-level program structure, which might be most help-
ful to the PbD part of the system. Some approaches propose
the use of situated instruction, where PbI is grounded in an
example state [12]. Some recent work on combining PbD
and PbI has focused on reinforcement learning frameworks
[17, 21, 13]. However, there are no general approaches for
incorporating broader forms of instruction and at the same
time only require one or very few examples. For the pur-
pose of learning web procedures, some recent approaches
have put more emphasis on the natural-language processing
aspects of the problem of matching demonstrations with ex-
plicit descriptions of what is being done, e.g., [2]. Besides
single actions, Allen et al. also describe a way for learning

Figure 1. Schematic data-flow in our framework.

iterations but for that rely on explicit indication of loop start
and end by the user.

We approach this problem by developing a formal, compre-
hensive framework for representing, updating, and execut-
ing program hypotheses. Our goal with this framework is
to enable any learner to output its acquired knowledge in
this form, allow for the combination of (sets of) program
hypotheses, so that different input/learning methods can be
combined, and enable the execution of partially learned pro-
grams if necessary, hence enabling learning from experience
or explicit user feedback as well. Our framework is inspired
by the recent approaches for combining PbD with user edits
and integrates PbD with PbI in a more flexible manner. The
key ideas of our approach are as follows:

1) We can represent (infinite) sets of program hypotheses
usingnon-deterministic programs, in particular we can rep-
resent the incomplete procedures that can result from a PbI
system. These are used to represent uncertainty about the
target program being learned. In particular, we use the logi-
cal programming languageGolog [15] which readily allows
us to represent and reason about such non-deterministic pro-
grams. A Golog program can be understood to represent sets
of deterministic programs, namely all those that would re-
sult by resolving the non-determinism in one way or another.
We have developed a simple, controlled grammar based in-
terface that generates Golog programs from English instruc-
tions. This PbI system uses Golog’s non-deterministic pro-
gramming constructs in places where instructions are am-
biguous or incomplete.

2) We can refine these program hypotheses learned through
PbI based on an example from a PbD system. We extend
Golog’s semantics to implement the update function that re-
moves from a set of hypotheses all those that are inconsistent
with newly given demonstrations. This is implemented as
refinementsto the program representing the version space,
resolving some of the uncertainty, i.e., making some non-
deterministic parts of the program deterministic. In many
cases, a single example can be sufficient to resolve all non-
determinism, resulting in the data-flow depicted in Figure 1.

3) We can integrate any two program hypotheses into a sin-
gle one, for example to integrate the output of a PbI system
with the output of a PbD system that has learned from several
demonstrations. We accomplish this by defining a mecha-
nism for Gologprogram synchronizationthat implements a
provably sound and complete means of computingsymbolic
intersectionof (possibly infinite) sets of hypotheses.

An important feature of this framework is that it can accom-
modate incremental learning over time while allowing the
learner to test its current procedure hypothesis by executing
it. In essence, a procedure hypothesis in our framework is
akin to aprocedure version spacein that it represents many
possible hypotheses about the procedure in a very compact
manner. By virtue of basing the framework on Golog and
its semantics in the situation calculus, we get as a side-effect
the ability to execute, i.e., try-out, program hypotheses at
any time, even while there still remains a lot of uncertainty.
This exploits Golog’s integration with automated planning
and further facilitates learning from experience as well.

We will show that our system is able to resolve the follow-
ing kinds of issues commonly occurring in human instruc-
tion [8], when combined with a demonstration of the target
program in an example scenario:

• mapping of objects to action arguments,

• missing action arguments,

• ambiguous references like “him” or “it”,

• ambiguous scoping of conditionals and iterations, and

• unknown terms to refer to known actions or functions.

The next section describes our evaluation domain and goals.
It is followed by a review of the situation calculus and Golog.
Section 4 describes how we map natural language instruc-
tions into Golog programs. In Section 5 we present our ap-
proach for refining these programs given an example demon-
stration, and our empirical evaluation. Section 6 describes
our approach for program synchronization.

2. LEARNING COMPLEX GAME PLAYING PROCEDURES
To evaluate our approach’s ability to resolve types of omis-
sions and ambiguities that are common in human instruction
we consider procedures in the open-source real-time strat-
egy game Stratagus/Wargus1. In this game, the goal of the
player is to defeat all of the opponent’s agents using his own
footmen. Footmen units can be built inbarracks, which in
turn can be built bypeasants. In order to provide food for
his units, the player also needs sufficientsupplies, which are
provided byfarms. Farms can, again, be built by peasants
and each farm provides enough supply for four units. As an
example, we consider a family of scenarios where initially
the player only has one peasant, and the opponent, controlled
by the computer, has N footmen. In order to win, the player
has to first use his peasant to build barracks where he then
can build footmen. In order to do so, he also needs to build
farms to create the supplies for the footmen. The screen-shot

1http://wargus.sourceforge.net/

Figure 2. Screen-shot from the Stratagus/Wargus game.

in Figure 2 shows the situation where the player completed
building barracks, farms, and four footmen (twice as many
as the opponent’s) and is now ready to attack the opponent.
Outnumbering the opponent by a factor of two he is certain
to win the game.

As a running example in this paper, we will show how a user
can teach this general procedure to the computer by combin-
ing natural instruction and a demonstration in an example
scenario with two opponent footmen. The procedure that
will be taught will be applicable to any scenario where there
is at least one peasant and any number of opponent footmen.
The strategy is to always build twice as many footmen be-
fore attacking the opponent. This procedure contains several
loops and iterations over sets.

Instructions generally contain several types of omissionsand
ambiguities simultaneously. Consider the following text,
which is understood by our interface. These instructions
omit action arguments, lack scopes for loops and iterations,
use unknown terms, and contain ambiguous references.

Example 1. “Build barracks using bestPeasant then wait
until bestPeasant is ready, while noOfFootmen is less than
noOfOppFootmen times 2, if supply is less than 1 then build
farm, wait until bestPeasant is ready, create footman, wait
until bestBarracks is ready, while there is an opponent who
is alive, take the closestOpponent, forall footman attack him,
wait until he is dead.”

Our system is given these utterances and a demonstration of
the intended behavior using the Wargus interface shown in
Figure 2. A video of the demonstration can be found on our
web site [1]. Our goal is to produce the program of Fig-
ure 3. In our empirical results of Section 5.4 we consider
instructions describing this procedure with varying amounts
of omissions and ambiguities (Example 1 is one of them).
We will see that our framework allows us to (a) represent
trillions of program hypotheses compactly, and (b) use a

build(bestPeasant, barracks) ;
waitfor(ready(bestPeasant)) ;
while noOfFootmen< noOfOppFootmen· 2 do

if supply< 1 then
build(bestPeasant, farm) ;
waitfor(ready(bestPeasant));

build(bestBarracks, footman);
waitfor(ready(bestBarracks));

while (∃x) opponent(x)∧ alive(x)do
set(o, closestOpponent);
foreacha, footman(a)do

attack(a, o)
waitfor(dead(o));

Figure 3. Our target program.

demonstration to effectively and efficiently identify which
of these hypotheses are consistent not only with the natural
language instructions, but also the demonstration. This will
produce the above target procedure.

While the focus of this paper is not on the interface, we study
the naturalness of the user experience when teaching using
a natural, controlled grammar in a separate line of work,
where we implement a system for teaching scientific work-
flows. This system, which extends the Wings Workflow Sys-
tem [10], will make it ever easier for non-programmers to
author new workflows or modify existing ones.

3. PRELIMINARIES
We use the situation calculus to formalize our approach. The
situation calculus is a sorted logic for specifying and rea-
soning about dynamical systems [20]. In the situation cal-
culus, the state of the world is expressed in terms offlu-
ents, functions and relations relativized to asituations, e.g.,
F (~x, s). A situation is a history of the primitive actions
a performed from a distinguished initial situationS0. The
functiondo(a, s) maps an action and a situation into a new
situation thus inducing a tree of situations rooted inS0. We
abbreviate do(an, do(an−1, . . . , do(a2, do(a1, s))) to
do([a1, . . . , an], s) or do(~a, s). We denote the set of actions
byA. In the situation calculus, all actions have deterministic
effects and this is what we are assuming in this paper.

In the situation calculus, background knowledge of a domain
(e.g., Wargus) is encoded as abasic action theory,D. It com-
prises four domain-independent foundational axioms and a
set of domain-dependent axioms. Details of the form of
these axioms can be found in [20]. Included in the domain-
dependent axioms are the following sets:

Initial state axioms, DS0
: a set of first-order sentences rela-

tivized to situationS0, specifying what is true in the initial
state, e.g.,Peasant(1, S0) andPlayerId(1, S0) = 0 state that
in the initial situation agent number 1 is a peasant and be-
longs to player number 0 (us).

Successor state axioms:provide a parsimonious representa-
tion of frame and effect axioms under an assumption of the
completeness of the axiomatization. There is one successor

state axiom for each fluent,F , of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whereΦF (~x, a, s) is a formula with free vari-
ables among~x, a, s. ΦF (~x, a, s) characterizes the truth value
of the fluentF (~x) in the situationdo(a, s) in terms of what
is true in situations.

Action precondition axioms:specify the conditions under
which an action is possible. There is one axiom for each ac-
tion a of the formPoss(a(~x), s) ≡ Πa(~x, s) whereΠa(~x, s)
is a formula with free variables among~x, s. For instance,
Poss(Build(x,Footman), s) ≡ Supply(s)> 0∧Barracks(x),
states that one can build a footman usingx only if x is of
type barracks, and there is enough supply for at least one
more unit.

Given the semantics, situations compactly describetracesof
state-action pairs and can hence be used to represent demon-
strations of procedures.

We have implemented a basic action theory that specifies the
available actions in the Wargus domain together with their
arity, as well as basic concepts that can be useful in teaching
various behaviors, such as “number of footmen” (noOfFoot-
men), “number of opponent footmen” (noOfOppFootmen).
In the basic action theory we also define the space of possi-
ble “values” that can be used as action arguments. Beyond
that we could have incorporated more details about actions,
including their preconditions and effects as describe above.
Such background knowledge can improve a systems ability
to disambiguate between possible candidate programs a user
is trying to teach. However, since this is not focus of this pa-
per, we used a very simple domain encoding for Wargus, that
does not describe any action preconditions or effects. These
may, however, play a role in future work, when considering
demonstrations that only describe the evolution of the state
of the world, without explicit mentioning of action occur-
rences. In those cases we would need to be able to conjec-
ture action sequences that would explain “what happened”,
as it has been described in the literature (e.g., [18]).

3.1 Golog
Golog [15] is a programming language defined in the situa-
tion calculus. It allows a user to specify programs whose set
of legal executions defines a sub-tree of the tree of situations
of a basic action theory. Golog has an Algol-inspired syntax
extended with flexiblenon-deterministic constructs. Golog
programs are created using the following constructs:

nil empty program
a ∈ A primitive action
φ? test conditionφ
[δ1; δ2] sequence
if φ then δ1 elseδ2 conditional
while φ do δ′ loop
(δ1 | δ2) non-deterministic choice
(πv)δ(v) non-deterministic choice of argument
δ∗ non-deterministic iteration

In addition, Golog enables the definition of procedures. The
semantics of a Golog programδ is defined in terms of macro
expansion into formulae of the situation calculus.
Do(δ, s, s′) is understood to denote a formula expressing

that executing programδ in situations is possible and may
result in situations′. This is defined inductively over the pro-
gram structure. For instance for primitive actions:

Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s), wherea[s]

denotes the actiona with all its arguments instantiated in sit-
uation s. For simple non-determinism:

Do(δ1 | δ2, s, s
′)

def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′). The com-

plete semantics can be found in [15]. In addition to the stan-
dard constructs, for the purpose of this paper we also use
a convenience constructforeach v, ϕ(v)doδ(v), which is
an iteration over all possible bindings for variablev such
thatϕ(v) is true, executing programδ for each such bind-
ing. We call a Golog programdeterministicif it contains
neither(δ1|δ2) nor (πv) nor δ∗. While deterministic con-
structs enforce the occurrence of particular actions, these
non-deterministic constructs define “open parts” that allow
for several ways of interpretation/execution.

In the context of this paper we will interpret non-deterministic
parts of a Golog program as uncertainty about the precise
target procedure being learned. We will see how this uncer-
tainty can be resolved via consideration of demonstrations.
Roughly, non-deterministic constructs can be compared to
the “union” operator and all other constructs to “join” oper-
ators often used in version space algebra based approaches
(e.g., [14]). Hence, just like version space algebras hierar-
chically combine simpler spaces into more complex ones,
we can use the inductive definition of the Golog language
to combine several sub-programs into more complex ones.
The availability of the concept of procedures is very helpful
in this respect: it allows us to define and reuse sub-version
spaces and give them names.

4. MAPPING INSTRUCTIONS INTO GOLOG PROGRAMS
We have created a simple, controlled-grammar based input
interface for users to write English instructions, describing a
program they would like the system to learn. These instruc-
tions are then translated into a Golog program, using non-
determinism in places where details were omitted or things
were ambiguous. The grammar and translation driving this
interface is domain independent and only takes a basic ac-
tion theory, i.e., a domain description, as input in order to
recognize and conjecture action names and functions, flu-
ents, and constants. The interface, deployed via a web appli-
cation, give feedback to the user in terms of which parts of
the typed-in instructions are being understood and how they
are interpreted. Nevertheless, the degree to which the lan-
guage supported by our grammar and the use of this interface
seems natural to the user is not focus of this paper. Instead,
we evaluate our work with respect to the types of omissions
and ambiguities our framework can resolve by means of con-
sidering one or more example demonstrations.

In the remainder of this section we will discuss the omissions
and ambiguities our framework can handle, some of which
are contained in above instructions, and will describe how
they can be represented in Golog. In the next section, we
will then describe how our approach can take such a Golog
program as input and then “refine” it by incorporating the
information contained in the given example demonstration.

This will produce the above target program.

Ambiguous mapping of action arguments:
When a user says:“attack the closestOpponent with best-
Footman”, it is not clear which of these arguments shall
be first and which second. To accommodate for this ambi-
guity, we use non-deterministic choice to model all possi-
ble orderings of the stated arguments. We hence represent
this sentence as:

(

attack(closestOpponent, bestFootman) |

attack(bestFootman, closestOpponent)
)

Upon consideration of an example demonstration, as de-
scribed in the next section, our refinement algorithm will
discover which of the two possibilities actually explains
the demonstration (is consistent with it) and will hence
only include that possibility in the refined program. This
will always be possible as long as the two arguments do
not have the same value in the given demonstration. Note,
however, that the demonstration does not mention func-
tions or fluents, but only concrete values. Hence, instead
of attack(bestFootman, closestOpponent) the demon-
stration will state, e.g.,attack(1, 5), if agent number 1
is currently thebestFootman and agent number 5 is the
closestOpponent.

Missing action arguments:
Human teachers often omit action arguments when they
seem obvious from the context or by common sense. Since
we assume that the domain definition contains an exhaus-
tive list of all possible actions in the domain of interest
together with their respective arity, it is easy to detect
whether an argument is missing. But the system still needs
to figure out what value (function, fluent, or constant) to
use for the missing argument. For instance, in Wargus it
seems natural to say“build barracks” , whereby one omits
the first required argument of the “build” action, which
specifies the peasant that shall be used to build the bar-
racks. However, if, e.g., there is only one peasant, it is
really obvious to a human what that argument should be.

Omissions of this kind are represented in our framework
using Golog’sπ construct. This introduces a new, exis-
tentially quantified program variable, representing the un-
known value, e.g.:

(πv)[value(v)?; build(v, barracks)].

The test,value(v), restricts the variable to be of type
“value”. During refinement, our algorithm considers all
possible such bindings that evaluate to the same concrete
value as the one appearing in the demonstration in the re-
spective current state of the demonstration.

Ambiguous references:
It is common for a human to refer to previously introduced
terms using pronouns (“he”, “it”, “him”, etc.) where again,
to a human it is often clear from the context or common
sense which object is referred to. In our interface, we al-
low for the explicit introduction of reference objects in
the context of quantification. For instance, when the user
says“take the closestOpponent, all footmen, attack him”

he both omits the subject of the attack and uses the am-
biguous reference “him”. To a human, who knows that
footmen attack, it might be clear that in each case of the
implicit iteration, the considered footman shall be used as
the subject of the attack and the closestOpponent as the
object. The demonstration for such a statement would in-
volve multiple instances of the attack action, all of which
share the same object but have different subjects. As we
will see, this is exploited by our refinement algorithm to
disambiguate the instruction.

Ambiguous scoping:
Specifying the scope of an if-then condition, a while-loop,
or an iteration over a set is something humans rarely re-
member to do when explaining a program, and in fact
generally does not confuse human students all that much
as humans are good at figuring out from context or com-
mon sense where the respective instruction block logically
ends. Our interface does not require the user to specify
the scope of such blocks either, but as a result, there are
often numerous combinations of possible scopes. Con-
sider, e.g., the instruction:“Take the closestOpponent,
forall footman, attack him with the footman, wait until he
is dead. ” The iteration in this sentence does not have
an explicit scope. It is hence not clear whether or not the
waiting action is part of the body of the iteration or not.
This can be represented in Golog as:

[

set(o, closestOpponent);
(

[foreach(a,Footman(a),attack(a, o));

waitfor(dead(o))]
∣

∣

foreach(a,Footman(a),

[attack(a, o);waitfor(dead(o))])
)]

Using unknown terms: In the Wargus domain, there is an
action called “build” that can be used to build new units
(e.g., footmen). When a user is unfamiliar with the correct
action names, he may however say:“create a footman at
the barracks”. He may even at the same time omit an ar-
gument: “create a footman”. To represent this sentence
in Golog and make these ambiguities explicit, we create
a non-deterministic choice between all possible actions in
the domain that have the right number of arguments or
more. For actions that have more arguments, we insert
existentially quantified variables, as described above. Un-
known terms appearing in the place of values are handled
analogously.

Putting it all together: The instructions of Example 1 con-
tain all of these types of omissions and ambiguities. The
Golog program representing these instructions is too large
to show in this paper but can be found on our web site:
[1]. While large, the program is still rather compact com-
pared to the set of 486400 candidate programs, which it
describes. This program can be used as input to the pro-
gram refinement approach we describe in the next section,
to produce the sought target procedure, when given the ex-
ample demonstration.

5. REFINING GOLOG PROGRAMS

In this section we describe how the existing Golog semantics
can be extended to refine a program given an example. This
will allow us to take the Golog program representing the
user instruction and refine it using any provided demonstra-
tions. We begin by defining the problem of programming by
demonstration and what counts as a solution in our setting.
We assume the target program to be deterministic. How-
ever, in the absence of sufficient training data, we may not
be able to specify all the details of this program and hence
still end up with a non-deterministic program after consider-
ing a number of examples. This is reflected in the definition.

Definition 1 (PbD Problem). A PbD problemis a tuple
〈

δ, {(S1, S
′
1
), . . . , (Sn, S

′
n)}

〉

, whereδ is a Golog program
and each(Si, S

′
i
) is a tuple of situation terms such thatS′

i
=

do(~a, Si) for some sequence of actions~a. A solutionto this
problem is any programδ′ such that:

1. for any pair of situationsS, S′, if D |= Do(δ′, S, S′), then
alsoD |= Do(δ, S, S′); and

2. for (Si, S
′
i
) ∈ {(S1, S

′
1
), . . . , (Sn, S

′
n)}:

D |= Do(δ′, Si, S
′
i) ∧ (∀s).Do(δ′, Si, s) ⊃ s = S′

i

That is, a solution to a PbD problem is a program that does
not admit any executions not admitted by the original pro-
gram, but does (at least) admit the given set of demonstrated
executions. Intuitively,δ is a non-deterministic Golog pro-
gram describing a space of possible programs, andδ′ is a
specialization of this program that enforces behavior accord-
ing to the given examples. We show how such a solution can
be obtained via simulation of the given program over the
demonstrations while keeping track of the non-deterministic
choices being made during this simulation. Note that even
though we assume the target program to be deterministic, a
solution to a PbD problem is not necessarily deterministic.
This is in particular the case when not enough demonstra-
tions were given to rule out any remaining uncertainty.

5.1 Defining Program Refinement
Given a starting situationS and a programδ, the originally
intended use of Golog was to create a constructive proof that
D |= ∃s′.Do(δ, S, s′), hence obtaining as a side-effect a sit-
uation terms′ that is a sequentialplan for how the program
can be executed successfully. We, however, will use the se-
mantics in a different way: giventwo situation termsS, S′

and a programδ with non-determinism, verify that executing
δ starting inS is possible and can result inS′. In doing so,
we heavily exploit the logical underpinnings of the presented
framework, in order to actively exploit the content ofS′ to
infer how decisions need to be made, rather than following a
trial-and-error approach.

Recall that situations are sequences of actions and also, given
a basic action theoryD, completely describe the state of
the world. Therefore,S andS′ can be used to represent
a demonstration. Hence, without any modification neces-
sary, the existing Golog semantics can be used toverify that
a given program is consistent with a given demonstration.
This verification can be done efficiently, as the sequence of

actions inS′ guides the interpretation of the program, hence
often limiting the amount of search necessary to one-step
look-ahead. However, the program can actually also bere-
finedduring this process such that all choices regarding non-
determinism in the program that were necessary in order to
explain the given demonstration are recorded. The refined
program represents the version space updated with the con-
sidered example.

We accomplish this by extending the original Golog seman-
tics as shown in Figure 4, where we use an additional forth
argument that “returns” the refined program. Intuitively, the
refined program is the same as the original program for all
deterministic constructs, and for non-deterministic constructs
it contains the specific choice that was made in order to “ex-
ecute” the program. The latter, however, is only the case for
those non-deterministic choices that are actually visited. For
instance, choices occurring in the ’then’ or the ’else’ branch
of an if-then-else, are only resolved if that branch applied
to the considered example. Choices not visited during pro-
gram execution are left as is. In the next section we will see
that this refinement can be used to identify those specializa-
tions of the original program that are consistent with a given
program demonstration. This is accomplished by fixing the
second situation term (s′), which forces the program to ex-
ecute in compliance with the actions in that situation term.
Hence, by keeping track of the choices made during execu-
tion, we obtain a program that could be used to reproduce the
demonstration described by the givens′. Further, since only
those choices are made that are actually required to execute
the program, no candidate programs are ruled out.

5.2 Computing Program Refinement
Intuitively, the new, forth argument inDo′ “returns” the re-
fined program that results from making the necessary choices
during execution of the program in order to reachs′ from
s. Hence, we can achieve our goal of refining a Golog pro-
gramδ using a given demonstration(S, S′) by constructively
proving that:

D |= (∃δ′).Do′(δ, S, S′, δ′)

whereD is the basic action theory describing the domain.
This will provide us with one out of potentially several pos-
sible refined programsδ′. As with the original Golog, the
provided definition ofDo′ lends itself to a rather straight-
forward Prolog implementation, casting the problem of con-
structing this proof into a search problem. This implementa-
tion is available on our web site. It can be used to obtain all
possible refined programsδ′.

An Extended Example
Let us consider an example from the Wargus domain. In
Wargus we repeatedly receive descriptions of the current state
of the world from the game engine, which we can model as
special actions in the situation calculus, whose effect is to
set all fluents according to the information retrieved from
the game engine. Hence, demonstrations are sequences of
regular actions executed by the user and world-state descrip-
tions that indicate state updates and happen while the user is
waiting for orders to be completed. For instance, the action

Do′(nil , s, s′, δ′) ≡ s′ = s ∧ δ′ = nil

Do′(a, s, s′, δ′) ≡ Poss(a[s], s) ∧ s′ = do(a[s], s) ∧ δ′ = a

Do′(ϕ?, s, s′, δ′) ≡ ϕ[s]? ∧ s = s′ ∧ δ′ = ϕ?

Do′([δ1; δ2], s, s
′, δ′) ≡ (∃s∗, δ′1, δ

′
2).Do′(δ1, s, s

∗, δ′1)∧

Do′(δ2, s
∗, s′, δ′2) ∧ δ′ = [δ′1; δ

′
2]

Do′(if ϕ then δ1 elseδ2, s, s′, δ′) ≡ (∃δ′′).

(ϕ[s] ∧Do′(δ1, s, s
′, δ′′) ∧ δ′ = if ϕ then δ′′ elseδ2) ∨

(¬ϕ[s] ∧Do′(δ2, s, s
′, δ′′) ∧ δ′ = if ϕ then δ1 elseδ′′)

Do′(while ϕ do δ, s, s′, δ′) ≡ ¬ϕ[s′]∧

(∀P).
{

(∀s1, s2, s3, δ1, δ2, δ3)
[

ϕ[s1] ∧Do′(δ1, s1, s2, δ2) ∧

P (while ϕ do δ2, s2, s3,while ϕ do δ3) ⊃

P (while ϕ do δ1, s1, s3,while ϕ do δ3)
]

∧

(∀s1, δ1)¬ϕ[s1] ⊃ P (while ϕ do δ1, s1, s1,while ϕ do δ1)
}

⊃ P (δ, s, s′, δ′)

Do′((δ1|δ2), s, s
′, δ′) ≡

Do′(δ1, s, s
′, δ′) ∨Do′(δ2, s, s

′, δ′)

Do′((πv)δ(v), s, s′, δ′) ≡ (∃x)Do′(δ(x), s,′ , δ′)

Do′(δ∗, s, s′, δ′) ≡ (∀P).{(∀s1)P (s1, s1,nil)∧

(∀s1, s2, s3, δ1, δ2)[Do′(δ, s1, s2, δ1) ∧ P (s2, s3, δ2)

⊃ P (s1, s3, δ1; δ2)]} ⊃ P (s, s′, δ′)

Do′(P (~x), s, s′, δ′) ≡ Proc(P (~x), δ) ∧Do′(δ, s, s′, δ′)

Do′(waitfor ϕ, s, s′, δ′) ≡

(ϕ[s] ∧ s′ = s ∧ δ′ = waitfor ϕ) ∨

(¬ϕ[s] ∧ (∃x).Do′(waitfor ϕ, do(state(x), s), s′, δ′)

Figure 4. Axioms for refining programs.

sequence[attack(1, 5), state(. . .), . . . , state(. . .), attack(1,
6), state(. . .), . . .] represents a demonstration where the user
first ordered agent number 1 to attack agent number 5, then
waited for a while as the orders were carried out and the
world kept changing. The user then ordered the agent to at-
tack agent number 6, followed by more state updates. We
here, and elsewhere in this paper, omit the contents of the
lengthy state updates. In addition to this demonstration, the
user utters the following instructions:

“While there is an opponent who is alive, take the closest-
Opponent, attack him, wait until he is dead”

These instructions can be translated into the following Golog
program, which accounts for the ambiguous scope of the
while-loop, and the missing argument for the attack action:

(

while (∃x) opponent(x)∧ alive(x)do
set(o, closestOpponent);
(πv) [value(v)? ; (attack(v, o)| attack(o, v))];
waitfor(dead(o))

∣

∣

[while (∃x) opponent(x)∧ alive(x)do
set(o, closestOpponent);
(πv) [value(v)? ; (attack(v, o)| attack(o, v))]

waitfor(dead(o))]
)

Let us call this programP1 and the above action sequence
~A1. Let us further assume that there is a situationS in which
there are two opponents left alive, 5 and 6 with 5 being clos-

est right now, and that there is a designated “bestFootman”
which inS is agent number 1. Then, upon trying to prove

D |= (∃δ′).Do′(P1, S0, do(~A1, S0), δ
′)

the algorithm will discover that both branches of the non-
deterministic choice inP1 explain the first action of the se-
quence (attack(1, 5)) when usingv = bestFootmanand us-
ing the argument ordering(v, o) rather than(o, v). This is
because the condition of the while loop evaluates to true
in S ando is set to5. There may be functions, fluents, or
constants other than “bestFootman” evaluating to 1 inS and
each of them will be considered as a possibility as well. Be-
yond this first step though, only the first program branch ex-
plains the next action in the sequence,state(. . .), which is a
state update and which can only occurring while the player
is waiting. The second branch of the programP1 is thereby
ruled out, as it demands the execution of another attack ac-
tion, which is inconsistent with the demonstration. The def-
inition of Do′ for primitive actions requires the next action
in the demonstration to match the action being executed. If
also the remainder of the sequence~A1 can be explained us-
ing the first branch ofP1 with the values described above,
the refinement will succeed withδ′ =

while (∃x) opponent(x)∧ alive(x)do
set(o, closestOpponent);
attack(bestFootman, o);
waitfor(dead(o))

5.3 Formal Properties of Program Refinement
From a formal point of view, there are a few things to note
about our definition and computation of refinement: First of
all, the cases for if-then-else and while-loops are still inac-
cordance with the original Golog semantics. We here have
merely unwound the macro-definition (in terms of(δ1|δ2)
andδ∗). The reason for this is that we want to keep the if-
then-else/while-loop in the refined program, rather than re-
placing them with the specific sequence of actions resulting
from resolving the non-deterministic choices for the specific
case considered.

Second, since we want to explicitly refer to programs as ob-
jects, in order to produce the refined program, we require
the reification of programs as objects in the language. This
property is shared with the so called transition semantics for
Golog, as described by [6], and we assume programs are rei-
fied analogously. This also allows us to define the semantics
in terms of a predicate rather than macro-expansion.

Finally, by analogy to the original semantics we have that:

Proposition 1. For any two situationsS, S′ and a Golog
programδ without procedures:

D |= Do(δ, S, S′) iff D |= (∃δ′).Do′(δ, S, S′, δ′)

Soundness of Program Refinement
The following theorem states that program refinement leads
to provably correct solutions of PbD problems:

Theorem 1. Let M =
〈

δ, {(S1, S
′
1
), . . . , (Sn, S

′
n)}

〉

be a

PbD problem. Any programδ′ such that:

D |= (∃ δ1, . . . , δn−1).Do′(δ, S1, S
′
1
, δ1)∧

Do′(δ1, S2, S
′
2
, δ2) ∧ · · · ∧Do′(δn−1, Sn, S

′
n, δ

′)

is a solution toM . — Proof: See our technical report [7].

The theorem gives rise to a host of possible algorithms for
finding solutions. This includes the common filtering algo-
rithm for updating version spaces: Given the first demon-
stration, generate the entire set of consistent version spaces
(i.e., refined programsδ1). Then, given subsequent exam-
ples, remove from this set all those spaces (programs) that
are inconsistent with any of the examples. Note that our use
of logic readily realizes the “lazy evaluation” approach that
is popular in many version space algebra based approaches
to PbD in order to handle infinite version spaces.

Other possible algorithms could follow a depth-first or a best-
first search approach. The latter could, for instance, be re-
alized by devising an evaluation function that ranks refined
programs by some understanding of likelihood. For exam-
ple, shorter and/or simpler programs could be explored be-
fore more complicated ones are considered. There is a host
of related research on situation calculus and Golog from
which such specifications and search strategies could be
drawn (e.g., [3, 11]).

5.4 Empirical Results
While the ultimate goal of this work is to create a natural
interface for users, we do not evaluate the naturalness of our
current interface, since this is not germane to the contribu-
tions of this paper. Instead, in order to evaluate the utility of
our approach for the goal of effectively combining program-
ming by natural instruction with programming by demon-
stration, we consider a number of example instructions con-
taining common issues arising in natural instruction. We
evaluate how well our system can handle these issues, given
a single demonstrations of the target program.

Setup
Intuitively, the more omissions and ambiguities instructions
contain, the harder it is to refine them using an example
demonstration, because there are more possible ways of “ex-
plaining” prefixes of the demonstration. While our existing
implementation of the refinement algorithm based on the ax-
ioms of Section 5.1 has not been optimized, we neverthe-
less wanted to use it to gauge the empirical performance of
our algorithm. To that end, we created a set of 18 exam-
ple instructions, all describing the program from Section 2
with varying amounts of omissions and ambiguities of all the
types described. These instructions were created by manu-
ally removing more and more detail from a perfect descrip-
tion of the target program. Example 1 shows one of the 18
instructions we used.

We then translated these instructions into Golog programs
which we then refined using the previously described demon-
stration of the target program (cf. Figure 1). The demon-
stration and the complete set of instructions used in the ex-
periments together with their automatically generated Golog

 100

 1000

 10000

 100000

 1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

ex
pa

nd
ed

 s
ea

rc
h

no
de

s

number of candidate programs

with scopes
w/o scopes

Figure 5. Number of search nodes expanded in program refinement vs.
number of candidate programs described by instruction (log-log scale).

representation and the refined program produced by our al-
gorithm can be found on our web site [1]. In all cases, the
refined program was deterministic and equal or equivalent to
the intended target program.

Results
Figure 5 shows the results. Each point in the plot corre-
sponds to one example instruction. The x-axis denotes the
number of programs that are consistent with the instruction.
These are the candidate programs, each of which might be
the program that was intended by the user. This set of can-
didates is compactly represented by the Golog program that
we generate from the human instruction, as described in Sec-
tion 4. On the y-axis we show the number of search nodes
expanded during refinement of the Golog program, guided
by the example demonstration. To improve readability, we
have split the test cases (input sentences) into two classes,
shown in the figure using two different lines. In the first class
all sentences use explicit scoping of instruction blocks, such
as loops, while the second class contains the same sentences
but with all scoping information removed. All experiments
were run on an Intel Xeon CPU, at 2.66GHz. Memory con-
sumption was negligible due to the use of a depth-first based
search approach.

From the figure, we can conclude that the amount of omis-
sions and ambiguities in terms of action names, action argu-
ments, and their ordering, increases the amount of search re-
quired, as one would expect. In addition, we can observe that
missing scoping information over-proportionally increases
the amount of required search in order to refine the non-
deterministic program representing the natural instruction.
While removing scoping naturally increases the number of
possible target programs, it seems that its absence from the
instructions is particularly difficult to compensate for using
a demonstration. In other words, demonstrations seem very
effective in disambiguating between possible actions, action
arguments, ambiguous references and the like, but do not
provide much guidance in terms of program structure. This
is consistent with the general insight that demonstrationsare
poorly suited for describing complex program structure.

Overall, however, we can observe that our approach is able

to effectively and efficiently exploit the information con-
tained in an example demonstration to identify a consistent
candidate program. In some cases, our approach only had
to expand 7593 search nodes to identify a program that is
consistent with both the human instruction and the demon-
stration, out of 6.554 trillion candidate program that would
be consistent with the human instructions alone.

So far our algorithm only uses naive depth-first search. Its
performance in terms of considered nodes could hence still
be improved by drawing on the insights from the planning
and search literature. In particular heuristic search
approaches might improve performance by guiding the
search to explore most likely candidate programs first.

6. INTERSECTING VERSION SPACES
Thus far we have made the assumption that demonstrations
are given directly to our framework, and that only within
our framework the learning from examples takes place. In
practice, it would, however, be extremely valuable if we
could combine our framework with existing algorithms for
learning from examples as well. To this end, in this sec-
tion we consider the problem ofintersectingversion spaces
symbolically. The problem can be stated as follows: Given
two version spaces for the same target program, determine a
new version space that contains all and only those program
executions that were contained by each of the two given
spaces. In terms of our program based representation of ver-
sion spaces, we can define the problem more precisely:

Definition 2 (Program Intersection). Let δ1, δ2 be two Golog
programs over action theoryD. The Golog programδ′ is
called anintersection ofδ1, δ2 if for any two situationsS, S′

such thatS′ = do(~a, S) for some sequence of actions~a:
D |= Do(δ′, S, S′) iff D |= Do(δ1, S, S

′) and
D |= Do(δ2, S, S

′), and there is at least one such pairS, S′

such thatD |= Do(δ1, S, S
′) andD |= Do(δ2, S, S

′).

As an example, consider a situation where the user is teach-
ing how to behave when a single footman, denoted “F”, en-
counters a single opponent footman, “O”. The user utters:
“if strength of f is greater than strength of o, attack, else
retreat” and also demonstrates a few examples, where he
always either attacked, or moved away from the opponent.
The instruction omit the “attack” arguments, and use the
unknown term “retreat”. This is captured by the program:
if strength(F) > strength(O) then (πx, y)attack(x, y) else
((πx, y)move(x, y)|(πx, y)build(x, y)|(πx, y)attack(x, y)).
Assume that some PbD algorithm was able to generalize
the demonstrations to the program:(attack(F,O)|move(F,
pos(F) − (pos(O) − pos(F)))), wherepos(x) denotes the
x-y-position of agentx. That is, the learner learned the con-
cept of “away from the opponent”, but was not able to learn
under which circumstances to do the one vs. the other. When
taken together, one can of course find that that the correct
program is:if strength(F) > strength(O) then attack(F,O)
elsemove(F,pos(F)− (pos(O)− pos(F))). This is what is
achieved by the approach we define in this section forsyn-
chronizingtwo Golog programs.

We conjecture that the problem of (constructively) proving

the existence of an intersection for general Golog programs
is undecidable.2 Therefore, we only consider a restricted
form of Golog programs without while–loops and recursive
procedures, and where (bounded) non-deterministic iteration
is only allowed over primitive actions and expressions of
the form (πv)a(v) or (πv)v, i.e., non-deterministic choice
of action arguments or actions themselves. For clarity, we
refer to this language as Golog−. For this class of pro-
grams we define the set of axioms shown in Figure 6, de-
notedΣsync, regarding a new predicatesyncthat can be used
to constructively prove the existence of an intersection of
two programs, i.e., generate a program that represents the in-
tersection of the version spaces. The resulting representation
is very compact, as it uses the non-deterministic constructs
of Golog to represent the space of programs still considered
to be a candidate for the target program. For ease of pre-
sentation we assume—without loss of generality—that all
programs are sequences (e.g.,[A;nil] instead ofA). We use
the notationnondet(Z), whereZ is a set, to denote the non-
deterministic choice between the elements of the set, i.e.,for
Z = {z1, . . . , zn}, nondet(Z)

def
= (z1 | · · · | zn). Our re-

strictions on non-deterministic iteration ensure that this set
always turns out to be finite3.

The axioms lead to a sound and complete means for com-
puting program intersections, as stated by the following the-
orem. We have implemented but not yet evaluated this.
Theorem 2. Let δ1, δ2 be two Golog− programs over some
action theory. If there exists a Golog− programδ′ such that
Σsync |= sync(δ1, δ2, δ′), then it is an intersection ofδ1, δ2.
Further, if there exists an intersection ofδ1, δ2, then there is
a δ′ s.t.Σsync |= sync(δ1, δ2, δ′). — Proof: See [7].

Note that the theorem does not state that all possible inter-
sections can be identified usingsync. This is because there
may be infinitely many possible intersections, all of which
characterizing the same sub-set of the version space. Instead,
only one such representation is found. This, however, does
not cause practical limitations.

7. DISCUSSION
We have presented a framework for integrating program-
ming by natural language instruction and programming by
demonstration. The key idea was to represent ambiguous
human instruction as non-deterministic programs, and then
refine these programs via simulation of demonstrations. We
have evaluated our framework in the Wargus domain, illus-
trating the types of omissions and ambiguities commonly
occurring in human instructions that our framework can re-
solve when provided with an example. Our empirical results
show that the framework is practically effective and efficient.
We further presented an approach for combining the sym-
bolic outputs of different learners via program intersection.

Our ultimate goal is to facilitate programming by end-users.
Therefore we plan to do user studies to evaluate the nat-
2Our intuition stems from the problem’s similarity to the difficult
problem of determining program equivalence.
3Intuitively this is becauseδ∗’s—which are the only source of
infinity—are unified when they “meet” insync.

sync(δ1, δ2, δ
′) ≡ sync′(δ1, δ2, δ

′) ∨ sync′(δ2, δ1, δ
′)

sync′(nil ,nil , y) ≡ y = nil

sync′([a; b1], [a; b2], y) ≡ (∃z).sync(b1, b2, z) ∧ y = [a; z]

sync′([ϕ?;x], δ2, y) ≡ (∃z).sync(x, δ2, z) ∧ y = [ϕ?; z]

sync′([if ϕ then δa elseδb;x], δ2, y) ≡
(

(∃za).sync([δa;x], δ2, za) ∧

((∃zb).sync([δb;x], δ2, zb) ∧ y = if ϕ then za elsezb) ∨

((6 ∃zb).sync([δb;x], δ2, zb) ∧ y = [ϕ?; za])
)

∨
(

(6 ∃za).sync([δa;x], δ2, za) ∧

(∃zb).sync([δb;x], δ2, zb) ∧ y = [¬ϕ?; zb]
)

sync′([(δa| δb);x], δ2, y) ≡
(

(∃za).sync([δa;x], δ2, za) ∧

((∃zb).sync([δb;x], δ2, zb) ∧ y = (za| zb)) ∨

((6 ∃zb).sync([δb;x], δ2, zb) ∧ y = za)
)

∨
(

(6 ∃za).sync([δa;x], δ2, za) ∧ (∃zb).sync([δb;x], δ2, zb) ∧ y = zb
)

sync′([(πv)δ(v);x], δ2, y) ≡ ((∃v′, x′).δ2 = [(πv′)δ(v′);x′]∧

(∃δ′).sync(x, x′, δ′) ∧ y = [(πv)δ(v); δ′]) ∨
(

(6 ∃v′, x′).δ2 = [(πv′)δ(v′);x′] ∧ (∃Z).y = nondet(Z) ∧

Z 6= ∅ ∧ (∀z).z ∈ Z ≡ (∃q).sync([δ(q);x], δ2, z)
)

sync′([a(v)∗;x], δ2, y) ≡
(

(∃x′).δ2 = [a(v)∗;x′]∧

(∃δ′).sync([a(v)∗;x], x′, δ′) ∧ y = [a(v)∗; δ′]
)

∨

(∃x′).δ2 = [((πv′)a(v′))∗;x′] ∧

(∃δ′).sync([a(v)∗;x], x′, δ′) ∧ y = [a(v)∗; δ′]
)

∨
(

(6 ∃x′)δ2 = [a(v)∗;x′] ∧ (6 ∃x′)δ2 = [(πv)a(v)∗;x′] ∧

(∃Z).y = nondet(Z) ∧ Z 6= ∅ ∧

(∀z).z ∈ Z ≡ (sync([a(v); a(v)∗;x], δ2, z) ∨ sync(x, δ2, z))
)

sync′([((πv′)a(v′))∗;x], δ2, y) ≡
(

(∃x′).δ2 = [a(v)∗;x′]∧

(∃δ′).sync([a(v)∗;x], x′, δ′) ∧ y = [a(v)∗; δ′]
)

∨

(∃x′).δ2 = [((πv)a(v))∗;x′] ∧ y = [((πv′)a(v′))∗; δ′] ∧

(∃δ′).sync([((πv′)a(v′))∗;x], x′, δ′)
)

∨
(

(6 ∃x′)δ2 = [a(v)∗;x′] ∧ (6 ∃x′)δ2 = [(πv)a(v)∗;x′] ∧

(∃Z).y = nondet(Z) ∧ Z 6= ∅ ∧

(∀z).z ∈ Z ≡ (sync([((πv′)a(v′)); ((πv′)a(v′))∗;x], δ2, z) ∨

sync(x, δ2, z))
)

Figure 6. The set of axiomsΣsync.

uralness of our natural-language interface and how effec-
tive end-users can program using the described combination
of instruction and demonstration. In [9] we present results
regarding the use of natural instruction for designing new
workflows in an interactive user interface. In that paper, our
focus was more on the user experience, while in this one
we focused on expressiveness of the language and the inte-
gration with demonstrations. In future work we would like
to merge the results of this work. Other possible directions
for future work include: considering the feasibility of PbD
under incomplete knowledge of the state, or in the face of
uncertain action effects, and investigating the effects ofthe
availability of detailed background knowledge about the do-
main and its actions.

8. REFERENCES
1. www.isi.edu/ikcap/wargus/ .

2. J. F. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung,

M. D. Swift, and W. Taysom. Plow: A collaborative task
learning agent. InProc. of the 22nd AAAI Conf. on Artificial
Intell., pages 1514–1519, 2007.

3. F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning
about noisy sensors and effectors in the situation calculus.
Artif. Intell., 111(1-2), 1999.

4. J.-H. Chen and D. S. Weld. Recovering from errors during
programming by demonstration. InProc. of the 2008 Intl.
Conf. on Intell. User Interfaces (IUI), pages 159–168, 2008.

5. P. Clark, J. Thompson, K. Barker, B. Porter, V. Chaudhi,
A. Rodriguez, J. Thomere, S. Mishra, Y. Gil, P. Hayes, and
T. Reichherzer. Knowledge entry as graphical assembly of
components. InProc. of the 1st Intl. Conf. on Knowledge
Capture (K-CAP), 2001.

6. G. De Giacomo, Y. Lesṕerance, and H. Levesque. ConGolog,
a concurrent programming language based on the situation
calculus.Artif. Intell., 121(1–2), 2000.

7. C. Fritz and Y. Gil. Towards the integration of programming
by demonstration and programming by instruction using
golog: Extended version with proofs. InAAAI Workshop on
Plan, Activity, and Intent Recognition (PAIR), 2010.

8. Y. Gil. Human tutorial instruction in the raw. 2010. Submitted
for publication. Available at:
www.isi.edu/ ˜ gil/papers/gil-ker10.pdf .

9. Y. Gil, V. Ratnakar, and C. Fritz. Tellme: Learning procedures
from tutorial instruction. InProc. of the 2011 Intl. Conf. on
Intell. User Interfaces (IUI), 2011.

10. Y. Gil, V. Ratnakar, J. Kim, P. A. Gonzalez-Calero, P. Groth,
J. Moody, and E. Deelman. Wings: Intelligent
workflow-based design of computational experiments. In
IEEE Intelligent Systems, 2010.

11. H. Grosskreutz and G. Lakemeyer. Turning high-level plans
into robot programs in uncertain domains. InProc. of the 14th
European Conf. on Artificial Intell. (ECAI), pages 548–552,
2000.

12. S. B. Huffman and J. E. Laird. Flexibly instructable agents.J.
Artif. Intell. Res. (JAIR), 3:271–324, 1995.

13. E. S. Kim, D. Leyzberg, K. M. Tsui, and B. Scassellati. How
people talk when teaching a robot. InProc. of the 4th
ACM/IEEE Intl. Conf. on Human Robot Interaction (HRI),
pages 23–30, 2009.

14. T. A. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld.
Programming by demonstration using version space algebra.
Machine Learning, 53(1-2), 2003.

15. H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B.
Scherl. GOLOG: A logic programming language for dynamic
domains.Journal of Logic Programming, 31(1-3):59–83,
1997.

16. H. Lieberman, editor.Your wish is my command:
programming by example. Morgan Kaufmann, San Francisco,
CA, USA, 2001.

17. R. Maclin, J. W. Shavlik, L. Torrey, T. Walker, and E. W.
Wild. Giving advice about preferred actions to reinforcement
learners via knowledge-based kernel regression. InProc. of
the 20th National Conf. on Artificial Intell. (AAAI), pages
819–824, 2005.

18. S. McIlraith. Explanatory diagnosis: Conjecturing actions to
explain observations. InProc. of the Sixth Intl. Conf. on
Principles of Knowledge Representation and Reasoning (KR),
pages 167–177, 1998.

19. D. Oblinger, V. Castelli, and L. D. Bergman. Augmentation-
based learning: combining observations and user edits for
programming-by-demonstration. InProc. of the 2006 Intl.
Conf. on Intell. User Interfaces (IUI), pages 202–209, 2006.

20. R. Reiter.Knowledge in Action. MIT Press, Cambridge, MA,
USA, 2001.

21. A. L. Thomaz and C. Breazeal. Teachable robots:
Understanding human teaching behavior to build more
effective robot learners.Artif. Intell., 172(6-7), 2008.

